2014 DOE SSL R&D Workshop

# Planning for Action

## SSL Multi-Year Program Plan

### Three Key Elements:

- Set Goals
- Define Work
- Track Progress

# The Goal of Energy Savings

- Energy savings for lighting is the overarching goal of the SSL program
  - Requires efficient lights
  - Requires widespread adoption

Source: Energy Savings Potential of Solid-State Lighting in General Illumination Applications, Navigant Consulting, Inc. for DOE, Jan 2012.

# Site Electricity Savings (% of baseline, US)



### What Will It Take?

### **EFFICIENT LIGHTING**

# Luminaire Efficacy (lumen/Watt)



Source: Energy Savings Potential ..., NCI/DOE

### **WIDESPREAD ADOPTION (US)**

# LED Market Share (% lm-hr)



# **Behind Efficiency and Adoption**

#### **EFFICIENCY**

- Source efficacy is not the end of the story
  - Luminaire efficiency includes drivers, optics, and so on
    - Bulb-luminaire is the old way
    - Role of integrated lights?
- Efficient Deployment
  - Ambient vs task partitioning?
  - Room or building systems?
  - Built-in lighting?

### **ADOPTION**

- Cost is only one factor
  - Old paradigm, good for bulbs, maybe, but...
  - Exclusive cost focus leads to commoditization
- Features sell, too
  - Control can mean stability as well as variability
  - Control includes light pattern, color, brightness
    - How can it be exploited?

## Light Bulbs are Commodities

- Commoditization means virtually no differentiation other than cost. Lack of innovation eventually leads to commoditization.
- Added value means product differentiation, profitability and jobs – a thriving enterprise.
   R&D supports innovation; innovation drives value.

Choose your vision

# Finding Value

- Color?
- Dimming and Controls?
- Light Profile?
- Light Output?
- Appearance?
- Deployment?
- What else?

### Goals to Milestones to Tasks

- Re-think the milestones
- Will they get us to the larger goal?
- Look farther into the future

- Focus R&D resources on barriers
  - Technical barriers to adoption
  - Barriers to reaching 200 lm/W luminaire efficacy
- Identify priority tasks for the near term
  - Add tasks to add value?

### **LED Milestones**

### Will these targets increase total energy savings? Value?

| Year | Target                                                                             |
|------|------------------------------------------------------------------------------------|
| FY12 | Luminaire: 100 lm/W; ~1000 lumens; CCT 3500K, 80 CRI, 50,000hrs to L <sub>70</sub> |
| FY15 | LED package: < \$2/klm (cool white); ~\$2.2/klm (warm white)                       |
| FY17 | Luminaire: >3500 lumens (neutral white); <\$100, >150lm/W                          |
| FY20 | Luminaire: 200 lm/W<br>Smart troffer with integral controls, <\$85                 |

Source: 2013 MYPP

LED package results at 35A/cm2 current density, 25C.

### **OLED Milestones**

### Will these targets increase energy savings? Value?

| Year | Target                                                  |
|------|---------------------------------------------------------|
| FY12 | Laboratory panel: 200 lm/panel; > 70 lm/W; > 10,000 hrs |
| FY15 | Commercial panel: >100 lm/W; <\$50/klm (price); 20K hrs |
| FY18 | Luminaire: 100 lm/W                                     |
| FY20 | Luminaire: price<\$50/klm                               |

Source: 2013 MYPP Panel is min. 200cm<sup>2</sup>,

## **Defining Work**

### Given the goals,

- What are the technological barriers?
- What needs to be done to overcome them?
- What are the specific tasks and priorities?
- What's the timetable?

## Some Key Barriers

#### **LED TECHNOLOGY**

- Control over the spectrum
- Understanding of color perception and needs
- Luminaire reliability
- Lack of efficient sources for all colors
- Narrowband red phosphors
- Inflexible packaging
- LED-specific controls

#### **OLED TECHNOLOGY**

- High cost of fabrication
- Light extraction
- Stability of blue emitters
- Understanding of degradation processes
- Practical substrates and electrodes
- Scaling up to useful sizes
- High performance encapsulation

## Recommended Tasks-LED Core

| Preliminary Recommended LED Core Tasks |                                 |  |
|----------------------------------------|---------------------------------|--|
| A 1.2                                  | Emitter Materials Research      |  |
| A 1.3                                  | Down Converters                 |  |
| A 2.2                                  | Novel LED Emitter Architectures |  |
| A 8.1                                  | Light Quality Research          |  |

### Recommended Tasks-LED Prod Dev.

| Preliminary Recommended LED Product Development Tasks |                                 |  |
|-------------------------------------------------------|---------------------------------|--|
| B 1.1                                                 | Substrate Development           |  |
| В 3.6                                                 | Package Architecture            |  |
| B 4.2                                                 | Epitaxial Growth                |  |
| B 6.3                                                 | System Reliability and Lifetime |  |
| B 6.4                                                 | Novel LED Luminaire systems     |  |
| B 7.4                                                 | Electronic Subsystems Research  |  |

### Recommended Tasks- OLED Core

| Preliminary Recommended OLED Core Tasks |                                   |  |
|-----------------------------------------|-----------------------------------|--|
| C 1.2                                   | Stable White Devices              |  |
| C 3.1                                   | Fabrication Technology Research   |  |
| C 6.3                                   | Novel Light Extraction Approaches |  |

### Recommended Tasks-OLED Prod. Dev.

| Preliminary Recommended OLED Product Development Tasks |                                        |  |
|--------------------------------------------------------|----------------------------------------|--|
| D 2.1                                                  | Substrate Materials                    |  |
| D 2.2                                                  | Low-Cost Electrodes                    |  |
| D 6.3                                                  | Panel Light Extraction and Utilization |  |

## Tracking Progress

### General Goals

- Luminaire efficacy ~200 lm/W
  - Source efficacies higher
- 60% of light from SSL technology
- Long life products, ~ 25K hrs or more
- Competitive price for value

How can we best track progress?

# LED Package Efficacy



Source: 2013 MYPP

# **OLED Efficacy**



Source: 2013 MYPP

## Progress towards Adoption



### Ideas Needed for the MYPP

- We've focused mostly on efficacy, lumens/Watt
  - First the efficacy of the packaged LED
  - Now more on luminaire efficacy
- How do we track progress on adding value?
  - What would be useful metrics for:
    - Color?
    - Controls?
    - Lifetime?
    - Other features...
- How about adoption in terms of generated light?
- What would be useful to you?

### **Nuts and Bolts**

#### **LED TOPIC TABLES**

- Choose your table, sign in
- Choose a scribe
- Bin the overall list of tasks into relative priorities
- Turn to your task
  - Why is it important?
  - What changes should be made in the task table?
- Use the PPT to prepare a summary

#### **OLED FORUM**

- Review OLED goals
- Review list of recommended tasks; nominate additions for discussion
- Bin amended list into relative priorities
- Recommend changes to urgent or important tasks

# Binning the Tasks

| Urgent                               | Important    | Desirable                                                                                                                                                                                                             |
|--------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.2.2 Novel Emitter<br>Architectures |              | A.1.2 Emitter Materials<br>Research<br>A.1.3 Down Converters                                                                                                                                                          |
|                                      | ut and Paste | A.8.1 Light Quality Research B.1.1 Substrate Development B.3.6 Package Architecture B.6.3 System Reliability and Lifetime B.6.4 Novel LED Luminaire Systems B.7.3 Smart Controls B.7.4 Electronic Subsystems Research |

# Getting It Done

- DOE needs your inputs!
  - Use the cards
  - Participate in the LED Topic Tables or OLED Forum
  - Tell us what should be changed